
Figure 1: Our model of QBH training. 
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Abstract 
Query-by-Humming (QBH) systems let a user find the 

desired song in a music database by humming or whistling 
its melody. Existing systems do not optimize on individual 
users, once deployed. We present a method to improve 
QBH performance with user-specific training on a deployed 
system. Parameters for the singer error model and note 
transcription are tuned using a genetic algorithm. Testing 
over a corpus of sung queries [3] our preliminary tests show 
songs within and near the top ten songs listed. 

1. Introduction 
People often wish to find a piece of music but do not 

know the name or artist of a piece. Examples include artists 
who want to address or avoid copyright infringement, or 
casual listeners who can recall the melody but not the name 
of the desired song. Query-by-Humming (QBH) systems 
[6] let a find a song from a database, based on a sung or 
hummed query. 

Each user will bring different aptitudes and weaknesses 
to the task of singing a melody. Thus, systems must be able 
to handle a variety of different singing styles. This can be 
facilitated through system training. Several QBH systems 
have utilized some form of generalized training for the 
tasks of transcription and comparison. For example, Meek 
and Birmingham [4] train a detailed a model of singer error 
for a Hidden Markov Model. Parker, Fern and Tadapalli [5] 
propose a general model for learning string matching 
alignments through the boosting of learners such as support 
vector machines or  neural networks.  Such systems 
typically require the structure of the queries be annotated 
before training can begin. For example, note segmentation 
requires segmented examples. Also, these systems are not 
designed for user-specific training after system deployment. 
We have built a QBH system that personalizes a singer 
model based on user feedback, learning the model on-line, 
after deployment. The more a person uses and corrects the 
system, the better the system performs.  

The system is outlined in Figure 1. The user sings a 
query(1). The system returns a list of songs from the 
database, ranked by similarity(2). The user listens to the 
songs returned and selects the desired one(3). The recorded 
query-to-correct-target paring is saved to a database(4).  
This database is used to train parameters for melody 
transcription and query comparison(5).  

The system tunes parameters by optimizing on the 
average rank of the correct targets for a set of stored 
queries, such as all recent queries by a single user. This can 
take place automatically with a deployed system, allowing 
personalization after deployment with no need for operator 
intervention to hand-label melodic transcriptions as 
“ground truth” comparisons.  

2. Learned Parameters 
The system currently learns two sets of parameters: 

those for query transcription and those for the singer error 
model. Each melody in our database of targets is encoded 
as a sequence of pitch and rhythm intervals between 
adjacent notes [1].  We encode our sung queries similarly. 
The singing is first transcribed into a sequence of fixed-
length 10 millisecond frames. Each frame is represented by 
three values: pitch, harmonicity and amplitude. The 
sequence of frames is segmented into notes through local 
thresholding on the difference between adjacent frames. 
This results in four learnable parameters: the relative 
weight given to each dimension (pitch, harmonicity, 
amplitude) and the chosen threshold. 

 Once a query has been turned into a sequence of note 
intervals, the system must determine its similarity to each 
target song in the database. Popular methods include string-
matching, n-grams and Markov models [1]. Results in [1] 
show probabilistic string-matching is a successful 
approach; it is the method we use. String-matching requires 
a reward function for comparing sequence elements. The 
more similar two elements are, the higher the reward for 
calling them a match. We encode a singer error model in 
this function. For example, the more often a singer confuses 



major thirds with minor thirds, the less we should penalize 
a difference between a major third in the query and a minor 
third in the target. 

Our error model uses a parameterized function defining 
the similarity between note intervals. The function takes 
five parameters, the weight of pitch and rhythm, the 
precision of each of these and the degree of octave 
similarity. 

 

3. Learning Method 
We learn the four parameters for note segmentation 

and five parameters for note interval similarity with a 
genetic algorithm [7]. Parameters are represented as a 
binary fraction with a total of 7 bits ranging from zero to 
one (by units of 1/127). Because the weights within each 
function (note segmentation and interval similarity) are 
dependent on each other, we can fix a weight per function, 
giving us a total of seven different parameters to be learned. 
We allow a six point crossover (between each of the seven 
parameters). All parameters for each function were 
adjacent.  

During each generation, the fitness of each individual 
is found using the Mean Reciprocal Rank (MRR) of the 
correct target. (So if the correct target is generally third in 
the list of songs, its MRR would be ~1/3). This fitness was 
used to determine which half of the population would 
produce children for the next generation using fitness 
proportional reproduction. 

4. Empirical Tests 
For preliminary tests we chose a population size of 30, 

running for a total of 15 generations. The initial test took 
approximately 3 days. Our more extensive test, after 
optimizations, is expected to run for approximately a week. 

The target database consists of 1049 melodies drawn 
from classical music and folk songs. A chance MRR, 
assuming a uniform distribution of rankings is log(n)/n = 
0.0066[1]. Our query data was a set of 6 songs each sung 
by 4 singers, for a total of 24 training queries. These 
queries were drawn from a QBSH corpus [3] used 
during the 2006 MIREX comparison of query-by-humming 
systems [2]. Ou 

We wanted to ask two questions during testing: how 
well can we generalize to other songs after user training, 
and how well can we generalize to other users after training 
on a population (general training)? During user training, we 
trained on five of the queries sung by a user and tested on 
the sixth, repeating this for each of the six queries. During 
general training, we trained on all songs for three of the 
singers and tested with the fourth singer’s songs, repeating 
this for each singer:  

Table 1 summarizes our results for the preliminary test. 
Mean MRR’s were largely within or near the top ten (1/10 

= 0.1) songs.  Given the added statistical power of our full 
experiment we will be able to make a more thorough 
analysis of the final results. 

Table 1: The preliminary test’s results. 

Mean Reciprocal Rank  
User Trn User Test Gen Trn Gen Test 

Mean 0.273 0.0488 0.158 0.0897 
SD 0.17 0.40 0.012 0.097 

5. Conclusions 
Our model for training would allow a QBH system to 

train without the use of query annotations: it thus has the 
potential to be used to improve system performance after 
deployment, allowing us to tune parameters for specific 
users. With our fairly limited initial test we were able to 
show mean MRR’s near the top ten songs, and we will be 
running more substantial tests shortly. 
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