
Figure 1: Our model of QBH training.

User-specific Training of a Music Search Engine
David Little, David Raffensperger, Bryan Pardo

Electrical Engineering and Computer Science
Northwestern University

Evanston, IL, USA
{d-little, d-raffensperger, pardo}@northwestern.edu

Abstract
Query-by-Humming (QBH) systems let a user find the

desired song in a music database by humming or whistling
its melody. Existing systems do not optimize on individual
users, once deployed. We present a method to improve
QBH performance with user-specific training on a deployed
system. Parameters for the singer error model and note
transcription are tuned using a genetic algorithm. Testing
over a corpus of sung queries [3] our preliminary tests show
songs within and near the top ten songs listed.

1. Introduction
People often wish to find a piece of music but do not

know the name or artist of a piece. Examples include artists
who want to address or avoid copyright infringement, or
casual listeners who can recall the melody but not the name
of the desired song. Query-by-Humming (QBH) systems
[6] let a find a song from a database, based on a sung or
hummed query.

Each user will bring different aptitudes and weaknesses
to the task of singing a melody. Thus, systems must be able
to handle a variety of different singing styles. This can be
facilitated through system training. Several QBH systems
have utilized some form of generalized training for the
tasks of transcription and comparison. For example, Meek
and Birmingham [4] train a detailed a model of singer error
for a Hidden Markov Model. Parker, Fern and Tadapalli [5]
propose a general model for learning string matching
alignments through the boosting of learners such as support
vector machines or neural networks. Such systems
typically require the structure of the queries be annotated
before training can begin. For example, note segmentation
requires segmented examples. Also, these systems are not
designed for user-specific training after system deployment.
We have built a QBH system that personalizes a singer
model based on user feedback, learning the model on-line,
after deployment. The more a person uses and corrects the
system, the better the system performs.

The system is outlined in Figure 1. The user sings a
query(1). The system returns a list of songs from the
database, ranked by similarity(2). The user listens to the
songs returned and selects the desired one(3). The recorded
query-to-correct-target paring is saved to a database(4).
This database is used to train parameters for melody
transcription and query comparison(5).

The system tunes parameters by optimizing on the
average rank of the correct targets for a set of stored
queries, such as all recent queries by a single user. This can
take place automatically with a deployed system, allowing
personalization after deployment with no need for operator
intervention to hand-label melodic transcriptions as
“ground truth” comparisons.

2. Learned Parameters
The system currently learns two sets of parameters:

those for query transcription and those for the singer error
model. Each melody in our database of targets is encoded
as a sequence of pitch and rhythm intervals between
adjacent notes [1]. We encode our sung queries similarly.
The singing is first transcribed into a sequence of fixed-
length 10 millisecond frames. Each frame is represented by
three values: pitch, harmonicity and amplitude. The
sequence of frames is segmented into notes through local
thresholding on the difference between adjacent frames.
This results in four learnable parameters: the relative
weight given to each dimension (pitch, harmonicity,
amplitude) and the chosen threshold.

 Once a query has been turned into a sequence of note
intervals, the system must determine its similarity to each
target song in the database. Popular methods include string-
matching, n-grams and Markov models [1]. Results in [1]
show probabilistic string-matching is a successful
approach; it is the method we use. String-matching requires
a reward function for comparing sequence elements. The
more similar two elements are, the higher the reward for
calling them a match. We encode a singer error model in
this function. For example, the more often a singer confuses

major thirds with minor thirds, the less we should penalize
a difference between a major third in the query and a minor
third in the target.

Our error model uses a parameterized function defining
the similarity between note intervals. The function takes
five parameters, the weight of pitch and rhythm, the
precision of each of these and the degree of octave
similarity.

3. Learning Method
We learn the four parameters for note segmentation

and five parameters for note interval similarity with a
genetic algorithm [7]. Parameters are represented as a
binary fraction with a total of 7 bits ranging from zero to
one (by units of 1/127). Because the weights within each
function (note segmentation and interval similarity) are
dependent on each other, we can fix a weight per function,
giving us a total of seven different parameters to be learned.
We allow a six point crossover (between each of the seven
parameters). All parameters for each function were
adjacent.

During each generation, the fitness of each individual
is found using the Mean Reciprocal Rank (MRR) of the
correct target. (So if the correct target is generally third in
the list of songs, its MRR would be ~1/3). This fitness was
used to determine which half of the population would
produce children for the next generation using fitness
proportional reproduction.

4. Empirical Tests
For preliminary tests we chose a population size of 30,

running for a total of 15 generations. The initial test took
approximately 3 days. Our more extensive test, after
optimizations, is expected to run for approximately a week.

The target database consists of 1049 melodies drawn
from classical music and folk songs. A chance MRR,
assuming a uniform distribution of rankings is log(n)/n =
0.0066[1]. Our query data was a set of 6 songs each sung
by 4 singers, for a total of 24 training queries. These
queries were drawn from a QBSH corpus [3] used
during the 2006 MIREX comparison of query-by-humming
systems [2]. Ou

We wanted to ask two questions during testing: how
well can we generalize to other songs after user training,
and how well can we generalize to other users after training
on a population (general training)? During user training, we
trained on five of the queries sung by a user and tested on
the sixth, repeating this for each of the six queries. During
general training, we trained on all songs for three of the
singers and tested with the fourth singer’s songs, repeating
this for each singer:

Table 1 summarizes our results for the preliminary test.
Mean MRR’s were largely within or near the top ten (1/10

= 0.1) songs. Given the added statistical power of our full
experiment we will be able to make a more thorough
analysis of the final results.

Table 1: The preliminary test’s results.

Mean Reciprocal Rank
User Trn User Test Gen Trn Gen Test

Mean 0.273 0.0488 0.158 0.0897
SD 0.17 0.40 0.012 0.097

5. Conclusions
Our model for training would allow a QBH system to

train without the use of query annotations: it thus has the
potential to be used to improve system performance after
deployment, allowing us to tune parameters for specific
users. With our fairly limited initial test we were able to
show mean MRR’s near the top ten songs, and we will be
running more substantial tests shortly.

References

[1] R. Dannenberg, W. Birmingham, B. Pardo, N. Hu,
C. Meek and G. Tzanetakis, A Comparative
Evaluation of Search Techniques for Query-by-
Humming Using the MUSTART Testbed, Jounral
of the American Society for Information Sicence
and Technology, 58 (2007).

[2] J. S. Downie, K. West, A. Ehmann and E. Vincent,
The 2005 Music Information retrieval Evaluation
Exchange (MIREX 2005): Preliminary Overview,
6th International Conference on Music
Information Retrieval, September 11-15, London,
UK, 2005.

[3] Jyh-Shing and R. Jang, QBSH: A corups for
Designing QBSH (Query by Singing/Humming)
Systems, 2006.

[4] C. Meek and W. Birmingham, The dangers of
parsimony in query-by-humming applications,
International Conference on Music Information
Retrieval, Washington, DC, 2003.

[5] C. Parker, A. Fern and P. Tadepalli, Gradient
boosting for sequence alignment, The Twenty-First
National Confeerence on Artificial Intelligence,
Boston, MA, 2006.

[6] R. Typke, F. Wiering and R. C. Veltkamp, A
Survey of Music Information Retrieval Systems,
6th International Conference on Music
Information Retrieval, London, UK, 2005.

[7] A. Wright, Genetic algorithms for real parameter
optimization, The First workshop on the
Foundations of Genetic Algorithms and Classier
Systems, Bloomington, Indianna, 1990.

